Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nature ; 600(7887): 133-137, 2021 12.
Article in English | MEDLINE | ID: covidwho-1521757

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/virology , Amino Acid Sequence , Animals , Bayes Theorem , Child , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/blood , Deltacoronavirus/classification , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Female , Haiti/epidemiology , Humans , Male , Models, Molecular , Mutation , Phylogeny , Vero Cells , Viral Zoonoses/blood
2.
Virus Res ; 278: 197869, 2020 03.
Article in English | MEDLINE | ID: covidwho-2388

ABSTRACT

Porcine deltacoronavirus (PDCoV) is the etiological agent of acute diarrhoea and vomiting in pigs, threatening the swine industry worldwide. Although several PDCoV studies have been conducted in China, more sequence information is needed to understand the molecular characterization of PDCoV. In this study, the partial ORF1a, spike protein (S) and nucleocapsid protein (N) were sequenced from Shandong Province between 2017 and 2018. The sequencing results for the S protein from 10 PDCoV strains showed 96.7 %-99.7 % nucleotide sequence identity with the China lineage strains, while sharing a lower level of nucleotide sequence identity, ranging from 95.7 to 96.8%, with the Vietnam/Laos/Thailand lineage strains. N protein sequencing analysis showed that these strains showed nucleotide homologies of 97.3%-99.3% with the reference strains. Phylogenetic analyses based on S protein sequences showed that these PDCoV strains were classified into the China lineage. The discontinuous 2 + 3 aa deletions at 400-401 and 758-760 were found in the Nsp2 and Nsp3 coding region in five strains, respectively, with similar deletions having been identified in Vietnam, Thailand, and Laos. Three novel patterns of deletion were observed for the first time in the Nsp2 and Nsp3 regions. Importantly, those findings suggest that PDCoV may have undergone a high degree of variation since PDCoV was first detected in China.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/classification , Deltacoronavirus/genetics , Genome, Viral , Phylogeny , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Diarrhea/virology , Feces/virology , Gene Deletion , Prevalence , Swine , Swine Diseases/virology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL